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ABBTRACT

This study is the continuation of a performance evaluation

technique known as benchmarking to an experimental database

management system known as the Multi-Backend Database System

(MBDS).

The main emphasis of this thesis is on the instrumentation

of this parallel and scalable database computer, for

benchmarking its complex operations: UPDATE and RETRIEVE-

COMMON. The primary research question is to determine whether

MBDS demonstrates the response-time reduction and response-

time invariance claims when carrying out its two complex

operations. In order to benchmark these transactions, the

proper instrumentation of the test database, test transaction

sets, and test procedures were thoroughly executed. Detailed

testing, problem identification (debugging), and minor

software modifications were also conducted in an attempt to

verify the correctness of the program code for the update and

retrieve-common operations. Major problem areas are

documented, and proposed solutions are presented to aid future

efforts in the evaluation, modification, and testing of these

extremely complex operations to ensure their successful

performance evaluation.
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I. INTRODUCTION

A. BACKGROUND

1. The Field of Study

With the influx of modern computer technology, data

processing has become a highly significant operation of many

government, private, and commercial organizations. Most

crganizations rely on timely, accurate information to aid in

control, management, and decision-making. The need for fast,

accurate, efficient and economical information processing has

motivated an unending interest in database systems research.

Database systems are special-purpose computers which

consist of both hardware components and specialized software

packages called database management systems (DBMS).

Consequently, database systems are usually referred to as

database management systems. These systems own and control

their own databases, disk subsystems (secondary storage), and

transaction libraries, allowing them to perform on-line, data-

intensive transactions associated with real-world database

management applications.

The traditional data processing using, files, tapes,

and manual handling of transactions by operators is being

replaced by modern database management using databases, disks,

and automatic handling of transactions by database management

systems [Ref. 1].
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As a result of influential database systems research,

three database-system approaches have emerged. These include

the traditional mainframe-based approach, the software single-

backend approach, and the software multiple-backend approach

[Ref. 2).

a. Traditional Mainframe-Based Database Systems

In a traditional mainframe-based database system,

the DBMS software runs on a large mainframe computer, sharing

the computer's resources (CPU, secondary storage, etc.) with

other executing application programs. (See Figure 1.) As a

result, the performance of a mainframe-based database system

decreases as the mainframe workload increases.

Ma inframe Conputer

Applications Operating Database On-Line Rw Disk

Prograns Systemi Management 1/0 Data Controller

Figure 1. Traditional Mainframe Approach [Ref. 3]
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b. Software Single-Backend Database Systems

The software single-backend database system

evolved as a conventional approach to solving the problems of

performance degradation and resource sharing encountered by

the mainframe-based system. In the single-backend approach,

DBMS runs on a separate, dedicated computer with its own

operating system and disk system (see Figure 2). This

database computer known as a backend processor, is connected

to one or more host (frontend) mainframe computers via a

two-way communications link. By moving the database

management function to the backend computer, we free up the

busy frontend mainframe computer to process other application

Host

Applications Operating

Programs System

i ~Backend __ ____

Transaction c
Answer Database On-Line Raw Disk

STransactionI Answer Management 10 Data Controller
Host_____

Applications Operating

Prograns Systen

Figure 2. Single-Backend Approach [Ref. 3]
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programs. The frontend computer receives user requests in

the form of database transactions and transmits them to the

dedicated backend database computer. These transactions are

processed by the database computer and the response is

returned to the user over the communica:ions link. The

single-backend database system is more efficient and cost-

effective than the traditional mainframe-based database

system. However, the performance of the single-backend

database system remains measurably degraded as the workload

on the backend computer increases.

c. Software Multiple-Backend Database Systems

To overcome the performance and upgrade problems

experienced with both the traditional and the single-backend

systems, an unconventional approach, known as the software

multiple-backend database system has been developed. In this

approach the database system consists of at least one backend

controller and two or more backends interconnected by a

communications bus. The controller controls transaction

processing of the backends, and interfaces with the host

mainframe computer. The backends with their own disk systems

and identical software, perform the requested database

operations on the database which is distributed across the

disk systems. (See Figure 3.)

Multiple-backend database systems are capable of

providing both high-performance database management and large-

capacity growth. Increasing the number of backends and

4
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distributing the database evenly over each of the backend's

disk subsystems should demonstrate predictable performance

gains and capacity growth in a multiple-backend system

[Ref. 3].

In order to determine the performance capabilities

of a given multiple-backend configuration, a formal method for

measuring system performance must be exercised. This study

is a continuation of the performance evaluation presented in

a recent thesis by James Hall [Ref. 3] on an experimental

multiple-backend database system which is under development

in the Laboratory for Database Systems Research of the Naval

Postgraduate School.

2. The Previous Research

Prior to James Hall's thesis, various significant

research efforts were responsible for the development of the

methodology and computer-aided design (CAD) tools used in this

study. Hall's thesis presents a chronological list of

previous work, briefly describing the contribution of each.

3. Our Area of Research

Our area of research involves the performance

evaluation of parallel database computers. This study is the

actual application of a performance evaluation technique

called benchmarking to an experimental database management

system known as the Multi-Backend Database System (MBDS) in

an attempt to verify the implementor's claims of MBDS in terms

of performance gains and capacity growth. However, in this
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thesis we focus mainly on the instrumentation of this parallel

database computer for benchmarking its complex operations:

Update and Retrieve-Common.

4. The Research Environment

Research was conducted in the NPS Laboratory for

Database Systems Research on a network of modern UNIX (ISI)

workstations. Hall used the same controlled environment to

conduct his research. The research was aided by using the

same existing set of computer-aided design (CAD) tools for

performance evaluation known as the Computer-Aided

Benchmarking System (CABS) [Ref. 4]. Maintenance and

development of this experimental Multi-Backend Database System

(MBDS) is still being conducted by professional programmers.

5. The Importance of Research

James Hall in his recent thesis completed the

benchmarking (testing) of MBDS with eight (8) parallel

backends. His benchmarking was on two of the four

set-oriented database operations, namely, the RETRIEVE and

DELETE operations, which are the two most simple operations.

Using the benchmarking results collected, Hall was extremely

successful in verifying the performance claims of the designer

and implementor of MBDS in terms of response-time reduction

(performance gains), response-time invariance (capacity

growths) measures.

There are two other set-oriented database operations:

UPDATE and RETRIEVE-COMMON. These two database operations are

7



far more complex than the retrieve and delete operations.

Thus, prior to any benchmarking, MBDS must be prepared for

such undertaking. Such preparation is termed instrumentation.

Although this research is to follow the tradition established

by Hall's thesis, its main focus is on the instrumentation of

MBDS for applying the benchmarking methodology onto these two

extremely complex operations. Subsequently, the results of

the benchmarks can be used to fully assess the performance

claims of the implementor of MBDS based on all four of its

operations: RETRIEVE, DELETE, UPDATE, and RETRIEVE-COMMON.

B. COMPLEXITY OF A MULTIPLE-BACKEND DATABASE SYSTEM

There are three design requirements of MBDS that makes it

far more complex than either the conventional mainframe-based

system or the more recent single-backend system. These design

requirements are discussed in [Ref. 5] as follows:

The first requirement states that a multi-backend database

system must be expandable in order to support the addition of

backends for performance enhancements and capacity growth.

This expansion must require no modification to the existing

database software, no new programming necessary for the

expansion, no modifications to the hardware and no major

disruption of system activity when additional backends are

being incorporated into the system. The system is also

scalable in that a variable number of backends must be tested

for valid, effective performance evaluation.
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The second requirement mandates that both the hardware and

software are generic. The hardware of the backends should be

typical and readily available and can be added to the system

with minimal interruption of the system activity. The backend

software should be designed so that a new backend can be

integrated into the system by simply replicating the database

system software of another backend into the new backend. With

this requirement, a multi-backend database system can be

upgraded by adding new backends of the same type and by using

existing system software.

The third requirement suggests that for storage a database

is evenly distributed across the disk systems of the backends,

and for operation there are parallel and concurrent processing

of transactions by the backends. Thus, when a transaction is

being processed, a backend works on its own portion of the

database in parallel with other backends working on their own

portions of the same database. This is parallel processing

of a transaction and parallel access to the database. In

addition to parallel processing and access, the backends

process several transactions concurrently in order to overcome

any idling of backends and delay in accessing the database.

By exploiting the parallelism and concurrency of the backends

and by distributing a database evenly for storage, the system

should gain in performance due to parallel accesses.

9



C. RESEARCH QUESTIONS AND OBJECTIVES

1. MBDS Performance Claims

MBDS is designed to employ two or more backends for

parallel processing of transactions, by distributing the

database evenly over the backends' disks. Performance gains

(in terms of response-time reduction) and capacity growth (in

terms of response-time invariance) of a multi-backend database

system are likely to be proportional to the number of backends

of the system. The following is a summary of the performance

claims that have been made by the designer and implementor of

MBDS [Ref. 3):

* Response-Time Reduction (RTR). The response-time
reduction of a transaction is inversely proportional to
the multiplicity of the backends. This means that as the
number of backends increases, the response-time reduction
for a given transaction is expected to improve (e.g.,
moving from one backend to three backends should yield a
response-time which is just one-third the original
response time).

* Response-Time Invariance (RTI). The response-time
invariance of a transaction in response to the increase
of the database size is maintained by a corresponding
increase in the multiplicity of the backends (e.g., when
the database doubles in size, doubling the number of
backends will yield the original response-time).

2. The Primary Research Question

The primary research question is to determine whether

MBDS demonstrates the response-time reduction and response-

time invariance when carrying out its two complex operations:

UPDATE and RETRIEVE-COMMON. In order to benchmark these

transactions we must ensure the proper instrumentation of the

test database, test transaction sets, and test procedures.

10



We must also verify the correctness of the program code for

these transactions through detailed testing, problem

identification (debugging), and software modification.

D. SCOPE OF THE THESIS

The scope covers the broad spectrum of performance

evaluation and design analysis of database computers in

parallel architecture. However, the main emphasis will be on

the instrumentation of a parallel database computer, namely,

MBDS, for benchmarking its complex operations.

A benchmarking methodology will be applied to MBDS with

a variable number of parallel database processors (backends).

The benchmarking will be used to identify any design flaws and

implementation drawbacks encountered while processing the

complex transactions. Proposed solutions to identified

problems will be presented in order to correct or modify

system software for efficient performance evaluation. Some

preliminary benchmarking results have also been provided where

the initial instrumentation process has been successful.

E. ORGANIZATION OF THE THESIS

The remainder of this thesis is organized into five

chapters. Chapter II is an overview of MBDS. We describe the

design features of MBDS, the attribute-based data model, the

attribute-based data language, and the MBDS hardware. In

Chapter III we elaborate on the Computer-Aided Benchmarking

System (CABS) and its use in the instrumentation process.

11



Chapter IV contains a detailed description of the two

complex operations: UPDATE and RETRIEVE-COMMON. We describe

the algorithmic approach of each operation, existing problems

found within the algorithms, and proposed solutions to the

problems to ensure proper instrumentation of the system. In

Chapter V preliminary test results are provided to verify the

instrumentation.

Lastly, in Chapter VI we present a summary of the thesis,

present conclusions, and offer suggestions for future work on

the benchmarking of MBDS.

12



II. THE MULTIPLE-BACKEND DATABASE SYSTEM (MBDS)

A. MBDS DESIGN FEATURES

1. The Backend Controller

Although MBDS can be configured using a single

backend, the most effective performance results are achieved

by configurations consisting of two or more backend computers

with one computer acting as the backend controller.

As required by the software multiple-backend approach,

the MBDS backend controller does very little work. It is

mainly responsible for:

* receiving and pre-processing user transactions,

* transmitting the transactions to all of the backends
simultaneously for execution,

* collecting and post-processing the transaction results,

* routing the results to the host or terminal, and

* arbitrating data insertion into the database by the
backend.

During pre-processing, user transactions are

reformatted and placed on the broadcast bus. The

post-processing function combines the records received from

the backends in response to a transaction and performs any

aggregate operations (AVG, SUM, etc.) requested before

forwarding the complete results to the user (Ref. 3].

13



2. The Communications Bus

MBDS uses a broadcast bus to perform its communica-

tions tasks. A broadcast bus was selected over other bus

topologies primarily because it allows easy expansion of the

number of parallel backends on the system. The task of adding

another backend to a given system simply requires the

connection of the backend computer's communications to the

local-area network which is connecting the MBDS machines [Ref.

3].

By using a broadcast bus, MBDS can achieve parallel

execution of user transactions. The controller transmits a

message to all of the backends via the broadcast bus and the

message is received almost simultaneously by the backends.

The broadcast bus is also used by a backend to communicate

with all the other backends when necessary and, primarily to

return the partial result of transactions to the controller

for post-processing.

3. The Backend Computers

The backends with their own disk systems and software

are the workhorses of MBDS, performing the requested database

operations on the database which is distributed across the

disk systems. Each backend operates only on its portion of

the database and returns a partial result to the controller

for post processing. The following description of the design

of MBDS backends is extracted from (Ref. 5]:

... the backends of the system all have identical software
to allow replication of the software on a new backend.

14



Additionally, the backends must have complete software to
perform all of the database management functions. These
functions include directory management, concurrency
control, record processing, and communications. The
directory management function is responsible for managing
indices, calculating record clusters, allocating the
secondary-storage addresses for record insertion,
maintaining secondary-storage tables of indices, cluster
numbers, and addresses, processing transactions against
the directory tables, and providing record addresses for
subsequent database access operations. The concurrency
control function oversees various accesses to the
directory tables and the user data and facilitates the
concurrent execution of transactions. The record
processing function is used to stage the user data from
the secondary storage to the primary memory, to process
the staged data, to store data onto the secondary storage,
and to return the responses to the controller. Finally,
there are communication functions in each backend to
control communications among backends and between the
backend and the controller. It is necessary to minimize
the communications among backends, in order to reduce the
communications traffic among them.

4. The Database Layout

a. Data Placements

The full performance potential of MBDS depends on

the even distribution of the database across the backends.

The design of the MBDS database is extracted from [Ref. 5]:

In a multi-backend database system, a database must be
placed on the secondary storage in such a way so that all
of the subsequent accesses to the database will result in
block-parallel-and-record-serial operation. In other
words, all of the backends are accessing, in parallel, the
secondary-storage blocks of the same database in their
respective disk systems, although the records in the
blocks which may satisfy the same transaction or different
transactions are being accessed by the backends serially.
Thus, the issue really focuses on how to ensure an even
distribution of the user database across the disk systems
of the backends. Such a distribution requires a data
placement algorithm. To achieve an even distribution of
data, there must be a processor in the multi-backend
database system that is responsible for overseeing the
record-insertion process. The controller has an overview
of the entire system, and is the logical choice for

15



arbitrating the record insertion process, i.e.,

controlling the data placement.

b. Clustering

To achieve block-parallel-and-record-serial

operation, MBDS partitions logically related records into

clusters of records [Ref. 3]. The clusters consist of one or

more blocks of storage space. A block is a preset unit (e.g.,

a track) of the backend's secondary storage space.

The cluster-based database placement is arbitrated

by the controller and carried out by the backends [Ref. 5].

New clusters are formed by the backends. When the first

record is to be inserted to form a new cluster, the controller

uses its data placement algorithm to randomly select the

starting backend for the cluster. The backend in turn,

allocates a block of the secondary storage (disk) space to

store the record. Under the direction of the controller, the

chosen backend will continue to add new records of the same

cluster into the block until the block of storage space is

filled. The backend then notifies the controller that the

block is full. In a round-robin manner, the controller

directs another backend to continue the placement of new

records of the same cluster.

c. The Physical Distribution of Records

During Hall's research it was discovered that the

uneven distribution of records across the backends is

16



inevitable. The following is the physical distribution of

records as described in Hall's thesis [Ref. 3]:

... this clustering methodology can easily cause a certain
amount of uneven loading. This is especially true when
the block size is much larger than the record size or the
number of records in a given cluster is small. This
uneven loading phenomena is virtually unavoidable because
of the random selection of the first backend of each
cluster and the variable number of records possible in
each cluster.

Because the selection of the first backend of a given
cluster is a random decision, it is possible that certain
backends could be selected more often than others....

MBDS uses pseudo-random number generator from the UNIX
system function library and like any good pseudo-random
number generator it tends to pick, on the average, a
number near the middle of the range involved.... This has
a noticeable effect on the distribution of records.

Although a small amount of uneven loading of

records was encountered, it had little impact on the overall

performance of MBDS.

B. THE ATTRIBUTE-BASED DATA MODEL

The attribute-based data model is the database model used

by MBDS. It provides a high-level abstraction which allows

the user to focus on the logical properties of the database

without being concerned about the implementation and

instrumentation details of the database and the database

system.

In the attribute-based data model, the data is considered

in the following constructs: database, file, record,

attribute-value pair, keyword, attribute-value range,

directory keyword, non-directory keyword, directory, record
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body, keyword predicate, and query (Ref. 5]. These constructs

are applied to two kinds of data: the base data and the meta

data.

1. The Base Data

The following description of the base data is

extracted from [Ref. 5].

Informally, a database consists of a collection of
files. Each file contains a group of records which are
characterized by a unique set of directory keywords. A
record is composed of two parts. The first part is a
collection of attribute-value pairs or keywords. An
attribute-value pair is a member of the Cartesian product
of the attribute name and the value domain of the
attribute. As an example, <POPUT-ATION,25000> is an
attribute-value pair having 2500C as the value for the
population attribute. A record contains at most one
attribute-value pair foi each attribute defined in the
database. Certain attribute-value pairs of a record (or
a file) are called tae dircctcry keywords of the record
(file), because either the attribuce-value pairs or their
attribute-value ranges are kept in a directory for
identifying the records (files). Those attribute-value
pairs which are not kept in a directory are called
non-directory keywords. The rest of the record is textual
information, which is referred to as the record body.

In MBDS, the database consists of several record

files. The records are stored in secondary storage as a

collection of attribute-value pairs followed, optionally, by

a record body. However, the record body feature has not been

implemented. An example of a record is shown below.

(<FILE, USCensus>,<CITY,San Jose>,<POPULATION,40000>,
(Mild Climate))

The angle brackets <,> enclose an attribute-value pair. The

curly brackets (,), enclose the record body. The first

attribute-value pair of all records of a file is the same.
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The name of the attribute is FILE and the value is the file

name (NOTE: in this study the attribute named FILE is

actually implemented as TEMP). This first attribute-value

pair is mandatory as it partitions the database by the file

name.

2. The Meta Data

The meta data is the stored information about the base

data. We depend on the meta data for quick, direct access of

desired records for a transaction. MBDS meta data is made up

of attributes, descriptors, and clusters, and are known as

the directory information. Attributes represent types of base

data. Descriptors are used to specify, either ranges of

values (Type-B) or exact values (Type-A) of the attributes.

A cluster is a group of records such that every record in the

cluster satisfies the same set of descriptors.

The directory information is organized in three

tables: the attribute table (AT), the descriptor-to-

descriptor-id-table (DDIT) and the cluster-definition table

(CDT). AT maps directory attributes to the descriptors

defined on them in the descriptor-to-descriptor-id table.

DDIT maps each descriptor to a unique descriptor id. CDT maps

descriptor-id sets and record ids to cluster ids.

C. THE ATTRIBUTE-BASED DATA LANGUAGE

The attribute-based data language (ABDS) is the basis of

the data language of MBDS which supports the five primary
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database operations: INSERT, DELETE, UPDATE, RETRIEVE, AND

RETRIEVE-COMMON. In this thesis, we focus only on the two

complex operations. UPDATE and RETRIEVE-COMMON.

1. The Update Request

An UPDATE request is used to modify records of the

database. The UPDATE request consists of two parts, a query

part and a modifier part. The query identifies the records

of the database to be updated (changed) and the modifier

specifies how the records are to be updated. The following

UPDATE request will modify all records of the student file

having course number C200 by changing the GPA to four (4).

UPDATE((TEMP=-Stud)and(CNUM=C200))<GPA=4>

2. The Retrieve-Common Recruest

The RETRIEVE-COMMON request is used to merge two files

by common attribute values. The format of the RETRIEVE-COMMON

request is given below:

RETRIEVE (query-1) (target-list-i)
COMMON (attribute-i, attribute-2)
RETRIEVE (query-2) (target-list-2)

Attribute-1 and Attribute-2 in the COMMON clause are the

attribute names associated with the first RETRIEVE request

and the second RETRIEVE request, respectively. The records

in each file that satisfy both the query and the COMMON clause

are selected. The following is an example of a

RETRIEVE-COMMON REQUEST.

RETRIEVE (TEMP=Cors) (PLAC,ROOM)
COMMON (CNUM, CNUM)
RETRIEVE (TEMP=Stud) (NAME,GPA)
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This request would find all records in the Cors (course) file

and all records in the Stud (student) file that have the same

(common) attribute value, CNUM (course number), and return

the PLAC (place) and ROOM, student NAME and GPA of the

respective records having the same CNUM.

D. THE HBDS HARDWARE

1. Generic Unix Computers

The computers used during this study as well as Hall's

study are the Integrated Solutions, Inc. (ISI) super-micro-

computers. There are nine (9) ISI computers each using the

4.3 BSD UNIX operating system. Each computer also uses a

16.67 MHz Motorola CPU and has four megabytes of main memory.

They are compatible to SUN 3 workstations.

2. The Disk Drives

All of the backend computers have three hard-disk

drives: two small disk drives and a big disk drive. One

small disk is for the operating system to do paging and

filing. The other small disk with its 100 megabytes of

storage space is used to store the MBDS meta data. The big

disk has a storage capacity of 400 megabytes and is used to

store the MBDS base data. These disk drives are connected to

the backend's internal, high-speed data bus.

3. The Broadcast Bus

All of the backends and the controller are connected

to a local-area network (LAN). MBDS uses the industry-

standard Ethernet communications bus as its LAN, although
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additional MBDS software has been incorporated into the LAN

for reliable broadcasting. The controller serves as a gateway

to other external computers at the Naval Postgraduate School.
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III. THE INSTRUMENTATION PROCESS USING "CABS"

A. AN OVERVIEW OF CABS

The Computer-Aided Benchmarking System (CABS) is a

computer-aided design (CAD) tool, developed as a result of

several highly significant research efforts. Previous work

by Strawser [Ref. 6), Tekampe and Watson [Ref. 7], and Vincent

[Ref. 2] led to the actual implementation of CABS by Fenton

[Ref. 4].

CABS is extremely critical to the performance evaluation

of MBDS because it provides an automatic means of generating

the test database sets, and the test transaction mixes for

benchmarking parallel, multiple-backend database systems.

Without CABS the time and effort required to produce these key

features would be immeasurable.

The MBDS user needs only to input three essential elements

of information to CABS in order to generate a test database

and a test transaction mix. These elements of information

include:

* the number of backends in the system,

* the disk track size in the system, and

* the maximum disk storage of a single backend.

With the maximum number of backends as input, the test

database is designed to be distributed evenly over each of the

possible MBDS test (backend) configurations. Special
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descriptor files are created by CABS to accomplish this

distribution, along with the raw data records to insert in

order to build the database [Ref. 3]. The test transaction

sets generated by CABS are based on the database size

submitted as input by the user.

B. SETTING UP THE TEST DATABASE

1. The Test Database Generator

The objective of the database generator is to pass to

a TEST directory named "UserFiles," all of the necessary files

that represent the three database sizes recommended by [Ref.

2]: Large (N bytes), Medium (N/2 bytes), and Small (N/4

bytes). The directory contains three types of database files,

the template file, the descriptor file, and the record file.

CABS uses Strawser's recommendation to use four

different record sizes: Large (N), Medium-Lg (N/2), Medium

(N/4), Small (N/10) [Ref. 3]. Each of the smaller record

sizes evenly divides the large record size. All three of the

test databases are made up of twenty-five percent (25%) of

each of the respective record sizes.

a. Configuring the Test Database

The following information representing the

configuration of test databases is extracted from [Ref. 3].

The first step in finding a database of size N,

which can be distributed evenly between a given number of

backends, is determining the least common multiple (LCM) of
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the number of backends to be tested. CABS uses a lookup table

of precalculated LCMs. Using the LCM in the database

calculation ensures that for each configuration, the number

of backends can be divided evenly into the number of records

used.

CABS uses the LCM to calculate the size in bytes

of the smallest database building block which can be split

evenly between the backends. This building block is known as

the database multiple (DBM). The DBM is a multiple of 32

(Ref. 2), because the database must be divisible by four since

the database has to be quartered into the four different

record sizes. The small database size is one quarter the

original (N) size database. Finally, the implementation of

CABS was simplified by using database size divisible by two.

The calculation to arrive at 32 as the factor was simply

(4 * 4 * 2) = 32, which ensures the divisibility of the DBM.

The last element of the DBM calculation is the large record

size which is completely system dependent. In Strawser's

original scheme (Ref. 6], the large record size is based on

the disk track size. Unfortunately, modern disk drive

capacity (30 or more kilobytes/track) makes such a record size

impractical and unrealistic, as well, since database records

are normally much smaller than 30,000 bytes. For this study

a large record size of 1,000 bytes was chosen because it was

large enough to force MBDS to fragment the records on the

communication bus, but small enough to permit the use of a

25



scaled-down database. The actual database mu±iple for this

study then became:

* DBM = LCM(l,2,3,4,5,6,7,8) * 32 * 1000 bytes

* DBM = 840 * 32 * 1000 bytes

* DBM = 26,880,000 bytes.

This was, in fact, as close as CABS could get to the scaled-

down database target size of 30 megabytes. The three database

sizes provided by CABS were:

* Large 26,880,000 bytes

* Medium 13,440,000 bytes

* Small 6,720,000 bytes.

Note that these calculations are actually carried out in base

ten by CABS, apparently to simplify the actual calculations.

b. The Record File

The current version of CABS produces only one

class of record files. This class of record files represents

the response-time reduction (RTR) test. Each database (small,

medium, and large) has its own unique RTR record file.

According to [Ref. 4], CABS was supposed to generate a second

class of record files which represents the response-time

invariance (RTI) testing, but this feature was not implemented

in the actual software that resulted from [Ref. 4]. RTR

testing requires only one input file to be used with all of

the RTR configurations of a given database because the size

of database does not chance. RTI testing requires an extra

input file for each of the backends in the test (i.e., an
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eight backend test requires eight input record files for the

RTI testing) [Ref. 3].

The record file generated by CABS containing the

input code and raw attribute-value data necessary to build the

database for all four record sizes. The record file is the

input for the Test Interface (TI) mass load utility [Ref. 3].

The first three fields of each record are the template (file)

attribute and the two descriptor attributes. These attributes

are directory keywords used to cluster the records. The first

attribute, the template attribute, is a Type-B attribute which

values are limited to a specific set of values. The template

attribute which is referred to as "TEMP" is also the mandatory

FILE attribute for each record. "TEMP" receives as a value

one of four template names describing the record size class:

large records (Templg), medium-large records (Tempmedlg),

medium records (Tempmed), or small records (Tempsmall).

The second and third attributes, the descriptor

attributes, are Type-A attribute which take on a range of

possible values for each attribute. The names for the

descriptor attributes consist of three parts. The first part

is called INT which identifies the attribute value as an

integer. CABS simply inserts the consecutive record number

starting from one for each record class [Ref. 3]. The second

part is called either ONE or TWO. ONE associates the

descriptor attribute to the nine cluster categories. TWO

associates the descriptor attribute to the number of records
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per cluster. The third part identifies which record class,

large (LG), medium-large (MEDLG), medium (MED), or small

(SMALL). Thus, the second attribute (e.g., INTONELG) would

be used to partition the database consisting of large records

into nine cluster categories. The third attribute (e.g.,

INTTWOLG) would be used to partition the large record database

into hundreds of smaller clusters. A fourth attribute called

the MULTIPLE attribute is the first non-directory keyword

attribute of a record. The values of this attribute are

character strings ren-esenting how many times the database has

been multipliee '&.g., "one", "two", "three", ... , etc.) [Ref.

4]. These values are used to distinguish between the RTI

files. Since the RTI files are not generated, this attribute

is not implemented in the current version of CABS, and was not

used during this study.

c. The Template File

While the record file is fairly generic and could

be used as the input file for other DBMS tests, the template

and descriptor files are specifically created to support the

loading of the various MBDS test configurations [Ref. 3].

CABS generates a common single template file which is shared

by each of the database sets (small, medium, and large). This

file contains four independent templates, with each template

associated with a different record class. Each template

contains the names of both the directory and non-directory
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attributes and their associated data types, i.e., either

string (s), integer (i), or floating number (f).

d. The Descriptor File

Each of the three database sets has its own unique

descriptor file which contains indexing information for each

directory attribute in the database. The file includes the

name of each directory, its attribute value type (Type-A or

Type-B), and its datatype. Type-B descriptors are followed

by a list of the allowable values. Type-A descriptors are

followed by a list of the attribute-value ranges that specify

each cluster category. Taken together as a set of values for

any given record the descriptors identify a unique cluster of

records [Ref. 3].

2. Limitations on the Test Database Size

Due to the technical limitations discussed in Hall's

thesis [Ref. 3], the previous performance evaluation of MBDS

was conducted only on the smallest of the three database sizes

provided for testing by CABS. The size of this small database

is approximately seven (6.56) megabytes of base data

consisting of 30,240 records. The small database (6.56 MB)

used by Hall is the only database used in this study. The

generation of a larger database is still not feasible.

C. SETTING UP THE TEST TRANSACTION MIX

The test transaction mix was designed to allow the

performance evaluator to use one set of test transactions for
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all of the test configurations of each of the three database

sizes [Ref. 3].

So for each of the three database sets (large, medium,

small) generated by CABS, a set of test transactions are

generated. Each set of transactions has four subsets of

transactions one for each record class (large, medium-large,

medium, and small). Each subset of transactions consists of

24 different ABDL transactions which access a proportional

number of records within their respective record class. The

transactions are constructed from each of the five database

operations, and categorized as either over-head intensive or

data-intensive.

For this study CABS has generated three RETRIEVE-COMMON

transactions for each of three record classes (large, medium-

large, medium) in the small database set. Each of the three

transactions accesses a different proportion of records in

their respective record classes. These transactions can be

found in the "UserFiles" directory of the backend controller

under the following file names: SDBLGR#1, SDBMLR#l, and

SDBMDR#1.

However, it was discovered in this study that CABS did not

generate any UPDATE transactions in the transaction sets.

Therefore, the UPDATE transactions must be manually

constructed and inserted into the existing transaction set or

placed in a new file.
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D. NOW TO USE CABS

1. Running the Program

To execute the program, the evaluator types the

command "cad" at the UNIX system prompt in the "BENCH"

subdirectory of the MBDS system. The user will then see the

following prompt:

Input the number of backends in the system > 8

The evaluator must input the maximum number of

backends to be included in the test. For this study the

maximum number of backends is eight. This value should always

be the total number of backends provided by the system.

The system will now respond with the track size

prompt:

Input the disk track size in the system in bytes > 2000

The number (2000) entered at the prompt above

indicates the size of the records used by CABS for the test

database. This value is double the number of bytes the

evaluator has set as the large record size (1000). It is also

the block size assumed by CABS. (Ref. 3]

At the next prompt, the evaluator must input the

maximum amount of data to be loaded to any single backend

computer. The system prompt is:
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Input the max disk storage of a single backend
in whole megabytes (MBYTES) > 30

The evaluator must ensure there is adequate space in

the UNIX file system for the record file size specified.

At this point, the generation of the record files, and

the generation of reports are optional to the user. The

following sequence of prompts and system responses permits

evaluation of the reports before the lengthy record file

generation is activated:

-------------------------------------------------------

Do you want to generate the reports > y

Reports will be generated

Do you want the record files generated? (y/n) y

PERFORMING INITIAL CALCULATIONS

GENERATING THE TEMPLATE FILES

GENERATING THE DESCRIPTOR FILES

GENERATING THE RECORD FILE

Create (s)mall, (m)edium, or (1)arge record file? s

Creating a small record file

GENERATING THE TRANSACTION MIX FILES

GENERATING THE REPORT FILES

------ --------------------------------------------------

The above procedures in the CABS program are to be

used for future requirements in generating a new test database
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of a larger size. These procedures were not exercised during

this study.

2. The Output

The following information describing the CABS output

is extracted from [Ref. 3]:

CABS produces a total of 49 different files during

execution and deposits the files in the directory from which

the program is executed. There are three main groups of files

produced:

* Database input files

* Transaction mix files

* Report files.

The first two groups of files in the directory can be

listed with the standard UNIX "Ils' command. The report files

are hidden but can be listed by using the optional UNIX "is

-a" command. A list of these files appear in [Ref. 3].

a. The Database Files

The CABS files necessary to build the test

databases are the following:

* TEST.t - the MBDS template file

* TEST.dl - the MBDS descriptor file (large database)

* TEST.dm - the MBDS descriptor file (medium database)

* TEST.ds - the MBDS descriptor file (small database)

* TEST.r - the base data to be inserted.

In order to load the test database, the evaluator has to

manually copy or move the above files to the appropriate
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directories. The "UserFiles" directory on the backend

controller needs to contain the following files:

* TEST.t

* TEST.d

* TEST.r.

Note that there is only one descriptor file listed above. The

evaluator must select the appropriate descriptor file for the

database (small, medium or large) and rename it to TEST.d.

The UserFiles directory on each of the backends must contain

the following files:

* TEST.t

* TEST.d.

These files are the same as the ones on the controller.

b. The Transaction Mix Files

The ABDL test-transaction files created by CABS

are:

* LDBLGR#l, LDB_MLR#l, LDBMDR#l, LDBSMR#l

* MDBLGR#1, MDBMLR#l, MDBMDR#1, MDBSMR#1

* SDBLGR#l, SDBMLR#1, SDBMDR#1, SDBSMR#l.

Each file contains 24 transactions which is more than enough

for a complete test. These files are text files which can be

modified in a text editor, if a smaller set of transactions

can meet the evaluator's needs. The file names can be changed

by the evaluator, as well, but the naming convention using a

pound sign followed by a number must be maintained. The

transaction files are the input for the test interface (TI)
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and are imported by using the TI "select transaction unit"

option. These files must also be moved to the controllers

UserFiles subdirectory.

c. The Report Files

All the remaining files in the directory are

report files. The evaluator report files can be printed out

by using the Unix command:

tbl <filename> I psroff -me.

There are a large number of reports, but because they do not

reflect the actual distribution of records, the reports are

not very useful. The CABS files listed below do provide a

good description of the "ideal" database topology which can

be used as a comparison with the actual database:

* .evtestconfig_1db

* .evtestconfig_mdb

* .evtestconfigsdb.

E. THE BENCHMARKING METHODOLOGY

The Benchmarking Methodology of this study was used

throughout the performance evaluation conducted by Hall, and

was originally documented in his thesis [Ref. 3]. This

methodology, as it is presented in the following sections,

includes step-by-step procedures and user-interface (pop-up)

menus which smoothly guides the evaluator through the

benchmarking process.
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1. Initializing the System Setup

Prior to loading a test database, the evaluator must

ensure that the secondary storage devices are clear of any

other data. The backend controller has a subdirectory named

"test." This subdirectory is further subdivided into

directories for each possible MBDS configuration and are

appropriately titled 1, 2, 3, 4, 5, 6, 7, 8. By selecting the

directory appropriate to the configuration under study, and

executing the script-file named "zero" the evaluator may begin

the benchmarking process. The command "zero" will cause the

meta data and base data disks used by MBDS to be cleared.

Another command called "zip" is provided in the above

directories, and may also be used to carry out the same

function as the "zero" command. Either process takes about

one hour per backend.

2. Operating the Test Interface

a. Starting the System

To run the test interface (TI), the evaluator uses

the UNIX "cd" command to move to the test subdirectory

appropriate to the configuration under study. The evaluator

then issues the "run" command located in the subdirectory.

The "run" command will start TI, the MBDS processes on the

controller and the processes on the appropriate backends.

The evaluator must ensure that all six processes are activated

on the controller, and all six processes are activated on each

backend before the operation is continued. The initial
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start-up takes some time because communications between the

controller and backends must be established. Once MBDS is

online and the TI main menu is presented, the evaluator

selects the menu choice "a" as follows:

The Multi-Lingual/Multi-Backend Database System

Select an operation:

(a) - Execute the attribute-based/ABDL interface
(r) - Execute the relational/SQL interface
(h) - Execute the hierarchical/DL/I interface
(n) - Execute the network/CODASYL interface
(f) - Execute the functional/DAPLEX interface
(x) - Exit to the operating system

Select-> a

b. Loading the Test Database

To load the test database, the evaluator needs to

select the Load-a-database option from the menu below:

The attribute-based/ABDL interface:

(g) - Generate a database
(1) - Load a database
(r) - Request interface
x) - Exit to the previous menu

Select-> 1

The next step is to load the test database

template file by selecting the use-a-database option from the

menu below and responding to the prompt for the database name

with "test" which is the test database name as below:
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Select an operation:

(u) - Use a database
(r) - Mass load a file of records
(z) - Exit, return to previous menu

Select-> U

Enter the name of the database: test

At this point, the system is ready to begin the

mass-loading of the record file. To accomplish this, the

evaluator selects the mass-load-a-file-of-records option from

the menu below and respond to the prompt with the record file

name "TEST.r".

Select an operation:

(u) - Use a database
(r) - Mass load a file of records
(x) - Exit, return to previous menu

Select-> r

Enter the record file name: TEST.r

The loading process will start and provide

feedback on the progress of the mass-loading utility every ten

records. Initially, the records load at a rate of about one

megabyte an hour and after six to seven hours the UNIX

operating system slows the entire process considerably. Since

MBDS must run for many hours to build the databaase, it is
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advisable to enter the following key strokes once the loading

process is running to cause MBDS to end the session normally

and save the meta data:

U <CR>
test <CR>
x <CR>
x <CR>
x <CR>.

The operating system will buffer this input and accept the

commands when the loading process finishes. This frees the

evaluator from monitoring the progress of the mass-load

process and limits the damage should one of the MBDS computers

crash after a successful load. By ending normally, the system

will write the meta data to secondary storage which permits

restarting the system at a later date. An abnormal ending

(such as a crash) after a successful mass-load could be costly

because reloading the database is the only way to build the

meta data again.

c. Conducting Performance Testing

Once the test database is loaded, the evaluator

can begin the actual performance evaluation. The first step

is to ensure that there are no other users on the controller

nor on any of the backends. Next, the evaluator must start

TI from the same system subdirectory used to load the test

configuration. From the main menu below, the evaluator

selects the execute-the-attribute-based/ABDL-interface option:
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II I I I -- - -- -- - -- -- -- - -- -- - -- -- - ---,-

Multi-Lingual/Multi-Backend Database System

Select an operation:

(a) - Execute the attributL-based/ABDL interface
(r) - Execute the relational/SQL interface
(h) - Execute the hierarchical/DL/I interface
(n) - Execute the network/CODASYL interface
(f) - Execute the functional/DAPLEX interface
(x) - Exit to the operating system

Select-> a

Next, selects the request-interface option from

the menu below and respond to the prompt for the database name

with "test":

The attribute-based/ABDL interface:

(g) - Generate a database
(1) - Load a database
(r) - Request interface
(x) - Exit to the previous menu

Select-> r
Enter the database id: test

Next, selects the performance-testing option from

the menu below:

Select a subsession:

(s) SELECT: select traffic units from an existing
list (or give new traffic units) for
execution

(n) NEW LIST: create a new list of traffic units
(d) NEW DATABASE: choose a new database
(p) * PERFORMANCE TESTING
(r) * REDIRECT OUTPUT: select output for answers
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(n) * MODIFY: modify an existing list of traffic
units

(a) * OLD LIST: execute all the traffic units in
an existing list

(x) EXIT: return to previous menu

Refer to the MLDS/MBDB user manual before choosing
subsessions marked with an asterisk (*)

Select-> p

The next step is to enable the system timers;

i.e., selects the turn-on-external-timer option from the menu

below and then selects the exit-to-previous menu option as

shown below:

Select an operation:

(e) Turn on external timer.
(i) Turn on internal timers.
(a) ABORT..Abandon all requested actions.
(x) Exit to previous menu.

Select-> e

External Timer On

Select an operation:

(a) Turn on external timer.
(i) Turn on internal timer.
(a) ABORT..Abandon all requested actions.

(x) Exit to previous menu.

Select-> x

The next step is to load a set of test

transactions to run against the database. To accomplish this,

the evaluator selects the first menu choice from the menu
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below and respond to the prompt with the name of one of the

four transaction sets appropriate for the size of the database

under study:

Select a subsession:

(s) SELECT: select traffic units from an existing
list (or give new traffic units) for
execution

(n) NEW LIST: create a new list of traffic units
(d) NEW DATABASE: choose a new database
(p) * PERFORMANCE TESTING
(r) * REDIRECT OUTPUT: select output for answers
(m) * MODIFY: modify an existing list of traffic

units
(o) * OLD LIST: execute all the traffic units in

an existing list
(x) EXIT: return to previous menu

Refer to the MLDS/MBDS user manual before choosing

subsessions marked with an asterisk (*)

Select-> s

Enter the name for the traffic unit file
It may be up to 40 characters long including the
.ext. Filenames may include only one 1#, character
as the first character before the version number.

FILE NAME-> BDB_MDR#1

-------------------------------------------------------

d. Collecting the Performance Data

Once the transaction set is loaded, the evaluator

just needs to enter the transaction number (they are numbered

from zero) at the menu below:
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Select Options:

(d) redisplay the traffic units in the list
(n) enter a new traffic unit to be executed
(hum) execute the traffic unit at [num]

from the above list
x) exit from this SELECT subsession

Option-> 0

(<CNT(INTONEMED, 160>)

Start: 12:32:31 Stop: 12:32:33 Elapsed Time:
2.167

The response time of a transaction is displayed as shown

above. The evaluator must manually transcribe the times for

later analysis. To move to the next record size and test

transaction set, exits from this submenu, chooses the select

option again and changes to the file name of the next test

transaction set.

e. Exiting the Test Interface

To exit TI, uses the menu selections to end the

test normally. When the user ends normally, all of the MBDS

controller and backend processes are also stopped. Although

exiting TI by using the CTRL-C keypress is possible, this

leaves most of the MBDS processes running. They will

interfere with those processes which are started by the next

run of TI. If it is necessary to end abnormally, there is a

script file in each configuration subdirectory named "burn"

which will stop all MDBS processes.
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IV. INSTRUMENTATION OF THE COMPLEX OPERATIONS

A. THE RETRIEVE-COMMON OPERATION

i. An Overview of Retrieve-Common

a. An Operation on Two Files

The Retrieve-Common request is used to merge two

files by common attribute values. The common-attribute values

are the attribute values of the records belonging to both

files. The retrieve-common operation is defined and described

in [Ref. 8] as follows:

Logically, the retrieve-common request involves

two retrieval cperations. The first retrieval operation is

defined as the source retrieve and the second retrieval

operation is defined as the target retrieve. The set of all

the records that belong to the result of the source retrieve

is called the source record set. The set of all the records

that belong to the result of the target retrieve is called the

target record set. A source (or target) record is the record

that belongs to the source (or target) record set.

Correspondingly, these attributes will be referred to as

source (target) attributes. The merged source and target

records are called the result record set.

The source and target attribute names that

participate in the retrieve-common operations are referred to

as join attributes, and their values common attribute values.
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The retrieve-common operation requires that the join aLLt.ibute

which is specified in the source record set must have the same

domain as that of the join attribute in the target record set,

although they need not have the same attribute name.

b. The Syntax of Retrieve-Common Operation

The syntax for the retrieve-common request

resembles the syntax of the ABDL retrieve request. This

allows the actual selection of records from secondary storage

to proceed as two retrieve requests [Ref. 9]. As depicted in

Chapter II, the syntax for the retrieve-common is:

RETRIEVE (query-i) (target-list-i)
COMMON (attribute-i, attribute-2)
RETRIEVE (query-2) (target-list-2)

The retrieve-common request consists of three

parts. The first part is referred to as the source retrieve,

which retrieves the source record set. The second part

consists of the join attributes, where Attribute-i refers to

the source record and Attribute-2 refers to the target record.

The values of these two attributes must be identical in order

to satisfy the condition for merging a source record with a

target record. Although their values must be identical, their

attribute names need not be identical. The third part is

called the target retrieve, which retrieves the target record

set. An example of a Retrieve-Common request is given below:

RETRIEVE (TEMP=US) (STATE, TOWN)
COMMON (TOWN, CITY)
RETRIEVE (TEMP=CANADA) (PROV, CITY)
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This retrieve-common request would return, from the United

States and Canada files, all states, towns, provinces, and

cities, where the town and the city have identical names.

2. The Design KDDroach

The main issue when considering a design strategy for

implementing the retrieve-common request is where the merge

of the source and the target records should be performed. The

design approach used for the MBDS retrieve-common request is

to have the backend do the merge operation. Each backend

performs a merge of its portion of the source records with all

of the target records, including those target records sent to

it by the other backends. Each backend then, sends its merged

results to the controller which, in turn, forwards the final

result to the user [Ref. 8].

This dpproach minimizes the controller function and

allows even distribution of the workload to each backend.

3. The Implementation Pased on Bucket-HashinQ

The implementation discussed in this section is

described in [Ref. 8]. This implementation strategy attempts

to speed up the comparison and merge by hashing records into

small groups (the buckets of the hashing tables) which contain

records with common attribute values, so that the time

complexity of the merging operation may be reduced.

A hashing function applied to the common attribute

value is used to hash records into buckets. The bucket

numbers are consecutive integers. Instead of using primary
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and overflow areas, the buckets use one or more fixed-size

blocks to store records. The numbers of blocks may vary among

buckets.

Two separate hashing tables are used, one for the

source record set, and one for the target record set. This

alternative is accomplished in three phases:

* The backends will hash and store their own source
records and target records into separate hashing tables
by a common hashing function. After all of the target
records have been hashed and stored, each backend will
broadcast the hashed results of their target records
(i.e., the bucket number and the records associated with
that bucket number) to all of the other backends.

* Upon receiving all of the target information from the
other backends, each backend stores those target records
into appropriate buckets according to their bucket
numbers.

* The backends perform the merge operation on the local
source records and the local (i.e., the entire) set of
target records and send the results to the controller.

4. The Logical Operation

After reviewing the design approach and the

implementation strategy, the logical operation of the

retrieve-common is listed as follows from [Ref. 9]:

* The retrieve-common request is converted into two
retrieve requests by placing the common attributes
into the target list of the source retrieve and the
target retrieve, respectively.

* All of the records which satisfy the source retrieve
are gathered, the common attribute value is hashed,
the records placed in the virtual memory, and the
hashed addresses are stored in the hash tables.

* All of the records which satisfy the target retrieve
are collected, and the hash values are calculated.
These records are also placed in the virtual memory
and their addresses are stored into another hash
table.
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* The target records of a backend are transmitted to all
of the other backends to be added to the local target
records. In this way, each backend has only a portion
of source records of the database, but has every
target record which is in the database.

* To perform the pairwise merge, the backend checks if
the value of the join attribute in each source record
is the same as the value of the join attribute in each
target record, since the join attributes have been
specified in the request. If the two values are the
same, the records are concatenated and outputted.

5. The MBDS Test Transactions

For this study CABS has generated three retrieve-

common transactions within the test transaction files of each

of three record classes (large, medium-large, and medium).

Records from the small record class are retrieved from the

target retrieve portion of each retrieve-common transaction

in the test transaction files of the medium record class.

Thus, retrieve-common transactions are not included in the

test transaction files of the small record class. The test

transaction files namely SDBLGR#l, SDBMLR#1, and SDB_MDR#1

are located in the "UserFiles" subdirectory on the backend

controller (presently db8).

The retrieve-common test transactions perform merge

operations on two back-to-back record classes, i.e., on large

and medium-large, on medium-large and medium, and on medium

and small. Each of the three transactions access a different

proportion of records in their respective record classes. The

first test transaction accesses a very small selection (two

percent) of records in the first cluster category of
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back-to-back record classes and return those records that

share common INTONExx attribute values within each respective

record class. This type of transaction is classified as

overhead-intensive which means most of the time is spent

looking up the clusters and on communications between the

controller and the backends rather than reading the database.

The second test transaction accesses all the records from the

record class of both the source and target retrieves such that

only one-half (1/2) the records satisfy each retrieve. Those

records that have common INTONExx attribute values are

retrieved and outputted. This type of transaction is called

data-intensive because most of the time is spent accessing the

data, not on processing them. The third test transaction

accesses all the records from the record class of the source

retrieve and that only one-half (1/2) the records satisfy that

retrieve. For the target retrieve only one sixteenth (1/16)

the records of that record class are accessed. Those records

that have common INTONExx attribute values are outputted.

This type of request is considered to be both overhead-

intensive and data-intensive.

6. Existing Problems with the Retrieve-Common Operation

During the instrumentation of the Retrieve-Common

operation, several major problems were discovered in the

program code. The first major problem was discovered while

trying to test the second and third test transactions of each

of the three record files.

49



When using a multiple-backend configuration consisting

of two backends or more, these transactions will not execute.

When the transaction number is entered at the system prompt

the system will attempt to process the transaction. The

record process (recproc.tr) on the backends starts to execute

(indicated by STAT symbol "R") then almost immediately begins

to idle (indicated by STAT symbol "I"). Eventually, all of

the processes on the backend controller are "killed" (Exit

Processor), indicating that the system has crashed and the

transaction can not be executed. The two transactions were

tested in all three of the test transaction files and similar

problems were encountered.

In analyzing the cause of this problem, our initial

theory was that in the hashing module used by the retrieve-

common operation, the following problems may exist:

* The hashing operation may not be functioning properly
due to a faulty addressing scheme created to store the
retrieved records from the source and target retrieve.

* There could be re prd collisions as a result of hashing
to which have not -en addressed by the hashing algorithm.

* The hashing operation may not be properly handling
bucket overflow.

After tracing and debugging the code, it was

discovered that there was a memory allocation problem stemming

from the hashing and bucketblock procedures of the hashing

module.
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a. The Hashing Procedure

This procedure is used to perform the hashing

operation on the values of the join attributes of the input

records which are either the backends' local source records

or the local target records. The output from the procedure

are the input records and their hashed values (i.e., the

bucket numbers), which are sent to the bucket-block procedure

with the request id for further processing [Ref. 8]. The

hashing operation is done by the hashing functions of this

procedure.

A hashing table with a large number of buckets is

useful for a number of reasons. First, the large number of

buckets may reduce the chance of hashing different attribute

values of records into the same buckets. Second, the number

of records in each bucket is also quite small and minimizes

the overflow issues. Thus it will reduce the access time

during merging. The bucket index of a hashing table is an

array of fixed-size bucket entries. There is a bucket entry

for each bucket to keep track of the records which are stored

in that bucket [Ref. 8].

In the case of MBDS, 16K bytes were determined to

be the size of the hashing table, yielding 2048 entries

(therefore, 2048 buckets) in the hashing table each with a

bucket entry size of 8 bytes. Each of the retrieve-common

requests requires two hashing tables, one for the source

retrieve records and one for the target retrieve records.
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Because of the potentially large number of hashing tables

concurrently in use, it is necessary to store the bucket

indexes of the tables in the secondary storage and stage them

into the primary memory on demand [Ref. 8].

b. Problems with the Bucket Number Constant

The memory allocation problem appears to be

centered around the number of buckets specified in the

HashFunction procedure. The value of the "Bucket Number"

constant was set to 2048 buckets as determined in [Ref. 8].

This constant is defined in /@db4/u/mdbs/6/common/commdata.def

as the maximum number of buckets for the hash table.

When the test transactions are ran on a two

backend configuration, the system crashes, failing to process

the transactions. The trace files on the program execution

reveals that there is a problem with memory allocation. The

error message reads; "Problem with Malloc in bucket block."

This error message is a result of the following code;

if ((blk=(struct block *)
malloc (size of struct block)))==Null)
print if ("problem with malloc in bucket block")

Another error message reads as follows:

SYSTEM ERROR 1: Problem with Malloc in createBE
Target Info-node ().

Looking at the trace files produced, it was obvious that the

limit set on the number of buckets was exceeded by the number

of records being retrieved from the two test transactions.
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The second retieve-common test transaction in the

medium data record transaction file (SDB-MDR#l) accesses all

of the records from the medium record set (8400 records) and

the small record set (16,800 records) such that one-half (1/2)

the records satisfy each retrieve (source & target). In this

case there is a total of 12,600 records being retrieved into

the buckets of the hash table. Clearly this number of records

drastically exceeds the 2048 buckets created in the hash table

for storage of the source and target records. The third test

transaction also exceeds the limit on the number of buckets

as it retrieves a total of 5250 records for temporary storage.

The second and third retrieve-common test

transactions in the medium-large record transaction file

(SDBMLR#1) retrieve totals of 5880 and 2100 records,

respectively, which have also exceeded the limit set on the

number of buckets for storage.

The test transactions in the large record

transaction file (SDBLGR#l) were able to run but not

consistently, due to memory not being freed as one transaction

is completed. This problem is further discussed in the next

section.

c. Other Problems Encountered with Retrieve-Common

In an attempt to correct the problems with the

bucket number constant, other severe problems were discovered.

There were two proposed solutions to the bucket number

problem:
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* increase the bucket number constants to whatever is
needed, and

* keep the current constants and reduce the number of
records retrieved by the two retrieve-common
transactions in each test transaction file.

In attempting the first solution, the bucket

number constant had to be increased by powers of two. This

is a standard practice for the UNIX system where the bucket

number of the hash tables are established using base two (2)

(i.e. 2048 is 211). The bucket number was increased to 8192

buckets (213) and then 16384 buckets (214).

This tremendous increase in buckets created a

larger bucket index and subsequently a much larger hashing

table to be maintained by the system. Although the system

uses the virtual memory which is virtually unlimited, problems

were still encountered. The system seemed to be overloaded

by the vast amount of paging of buckets in and out of primary

memory to accommodate the storage of the retrieved records.

This swapping is inevitable because the system does not have

enough primary memory to handle the amount of buckets required

to store the records retrieved by the retrieve-common

operations.

Subsequently, the second solution was attempted

which resulted in the discovery of more problems with the

retrieve-common. The two transactions of each test

transaction file were reduced down to 25% of the records being

accessed. This reduction worked for the first run, but
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subsequent runs were not successful. This problem resulted

from the allocated memory not being freed after a transaction

has been processed. There was also another case, where the

third transaction would run partially, but would hang up,

outputting only a portion of the query results. This problem

is caused by a missing message which indicates a problem in

communications between the controller and the backends when

conducting the final phase of the retrieve-common operation.

7. Proposed Solutions to Existing Problems

In addressing the memory allocation problems of the

original transactions produced by CABS, two solutions are

proposed:

* More primary memory should be added to the system in
order to process the retrieve-common transactions
involving the retrieval of large amounts of records.
A substantial increase in random access memory (RAM)
will reduce the requirement for massive paging as it
provides the required temporary storage for the
retrieval of source and target records.

* Another solution to this problem would be a complete
algorithmic approach to the hashing operations (i.e.,
map different attribute values of records into the
same bucket addresses), in lieu of the hashing table.
The correspondence between the hashed values and
bucket addresses is no longer represented in a hash
table which requires considerable space. By employing
the algorithm, we can dynamically compute the
correspondence without the need of any space for the
table.

Attempt was made by the system programmers to correct

the problems with the freed memory, and loss of messages.

However, due to the lack of time t' e problems were not
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solved in order to allow proper testing of the retrieve-common

operation.

Future research on the retrieve-common operation must

involve a complete evaluation and thorough clean-up of the

existing hashing algorithm to minimize the use of either

virtual and primary memories.

B. THE UPDATE OPERATION

1. An Overview of Update

An update request is used to modify the attribute

values of records in the database. The update request

consists of two parts: a query and a modifier. The query

identifies which records of the database are to be modified

and the modifier specifies how the records are to be modified.

The following is an example of an update request:

UPDATE((TEMP=Cors) and (CNUM=C200))<Room=S429>

This update request would change the room for course number

(C200) in the course (cors) file to S429.

2. The Design and Execution of an Update Request

The following design of the Update transaction is

described in [Ref. 10]. The modifier which specifies the new

value to be taken by the attribute being modified may be one

of the types described below:

Type - 0 : <attribute=constant>
Type - I : <attribute=f(attribute)>
Type - II : <attribute=f(attribute-l)>
Type - III : <attribute=f(attribute-l) of Query>
Type - IV : <attribute=f(attribute-l) of Pointer>.
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In the simplest case, a modifier indicates the new value to

be taken by the attribute being modified (i.e., type-O). In

the more involved cases, the modifiers specify the new value

to be taken by the attribute being modified as a function f

of the 'old' value of that attribute (i.e., type-I) or values

of some other attribute of the record to be updated (e, g.,

types II, III or IV). The other attribute is called the base

attribute (i.e., attribute-i in the specification).

In this study, we will only evaluate an update request

containing modifiers of type-O. The program code for update

requests containing modifiers of type III, and IV was not

available for this study.

An update request containing a modifier of type-O is

broadcasted by the controller to all the backends. The

backends will perform descriptor processing and address

generation. Afterwards, each backend has a list of secondary

memory addresses of the tracks containing the relevant

records. These tracks are accessed by respective backends and

the records satisfying the query are selected from these

tracks. These are the records to be updated.

Each of these records is updated using the modifier

in the update request. If the modifier is of type-a, the new

value to be taken by the attribute being modified in a record

to be updated is provided in the modifier.

Based on the attribute value that is changed, an

updated record may remain in the same cluster which it
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belonged (its pre-updated version) or it may now belong to a

different cluster. In the latter case, a record is said to

change cluster. An updated record will belong to a different

cluster only if the set of descriptors from which it is

derived is different from the set of descriptors from which

the pre-updated version was derived. If the modifier is not

a directory attribute, the updated record continues to be

derived from the same set of descriptors, since only directory

attributes affect the descriptors. Hence, the update record

does not change cluster. Such update is termed simple update.

If the modifier is a directory attribute, an updated record

ma, change cluster. This type of update is called a complex

update. In this study we will only evaluate the simple update

since the program code for complex update was not available.

In order to check whether or not a newly updated

record changes cluster, it is necessary for a backend to

search the descriptor-to-descriptor-id table (DDIT). To

facilitate such search, we have decided that each backend

should replicate the descriptors for all the directory

attributes in its secondary memory.

Finally, each backend will send an acknowledgement to

the controller to indicate that it has finished processing the

update request. When it has received acknowledgements from

all backends, the controller will output a message to the user

to signal successful completion of the update request.
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3. The MBDS Test Transactions

It was discovered in this study, that CABS did not

generate any test transactions for updates in the transaction

set files. Thus, the update transactions had to be manually

constructed in four separate files for each of the record

classes. These files are named: lgr#2, mlr#2, mdr#2, and

smr#2 for their respective record class.

The test transactions were constructed according to

the request set proposed in [Ref. 4]. Each test transaction

file is comprised of three update requests, all which are

data-intensive. The first update request identifies 1/8 of

the database (record class) and, updates STROO01's value from

"Xxxxxxxxx" to "Oneeighth". The second update request

identifies 1/4 of the database (record class) and updates

STROO05's value from "Xxxxxxxxx" to "Onequartr". The third

update request identifies 1/2 of the database (record class)

and updates STROO10's value from "Xxxxxxxxx" to "Onehalfff".

4. Existing Problems with the Update Request

While testing the update transactions described above,

a problem with the memory was encountered, similar to the

problem in the retrieve-common operation.

When trying to run the three transactions in the

respective test transaction files, the system attempts to run

the transactions, then it suddenly begins to idle and

subsequently kills the processes on the controller and the

backends.
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A trace on the program execution revealed the

following error message, "not enough memory." The problem was

determined to be involving a constant defined in the program

code, named "MAX-ADDRS-UPD". This constant establishes the

list of secondary memory addresses for temporary storage of

the records to be updated. This constant was originally set

to one (1) which was established to update only one record at

a time.

In an attempt to solve this problem, this constant was

set to 100. Another constant, named "MAXDIO_REG", was also

modified based on the "MAXADDRSUPD". The MAXDIOREG

constant was redefined by multiplying MAXADDRSUPD by a

certain value (i.e., MAXADDRSUPD*4). When MAXDIOREG was

defined as MAXADDRSUPD*4, the first test transaction of the

large record file (lgr#l) ran successfully. This transaction

is designed to update only 210 records. The remainder of the

test transactions in this file and the other files were not

able to run with the constants defined as such.

Therefore, MAXADDRSUPD was multiplied by eight (8),

six (6), and five (5), respectively. These constant

modifications still did not allow the remainder of the test

transactions to run successfully.

The final assessment of the problem, is that the

number of records being retrieved by the update transaction

requires a fairly large amount of storage -pace on the single

backend configuration. Since there is not enough primary
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memory (RAM) to store all the records at one time, the system

is once again overloaded by an intense amount of paging of

records in and out of the buffer. This paging subsequently

causes the system to crash, killing all of the controller and

backend processes. There once again, seems to be a problem

with the system freeing memory of completed transactions.

Transactions updating 420 records run inconsistently due to

memory not being freed, as with the retrieve-common.

5. Proposed Solutions to the Problems

In proposing solutions to the problems and with the

update operation, we must again consider adding more primary

memory to the system in order to reduce the intense

requirement for paging of records in and out of memory. The

problem with the system not freeing memory must also be

closely observed, and this portion of the code must be fixed.

Future implementors of the MBDS update may also

consider preparation of each update request to update the

desired amount of records in sessions in contrast with the

entire amount of records at one time. In this way, the buffer

size for the updating records can be small and fixed, although

the number of records required urIating may be large and

variable.
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V. THE PRELIMINARY RESULTS

A. A SUMMARY OF RESULTS

The preliminary results provided in this section are to

verify the successful modification to a portion of the program

code for the update operation. Initially, the simple update

would work only when trying to run transactions that would

update a single record. As discussed in Chapter IV, changes

were made to two of the constants used to establish the list

of secondary memory addresses for temporary storage of the

records to be updated. This modification allowed the first

test transaction of the large-record file (lgr#l) to be

executed, updating only a small amount of records (210

records). This number of records was also used to test the

other three record files.

The results obtained from the preliminary testing of this

single transaction is provided in this chapter as the

preliminary results. Although these results verify some

success in the modification of the update code, they are not

conclusive enough to verify any positive performance

improvements in regards to response-time reduction (RTR). The

response times also tend to level off after a two-backend

configuration was tested. This is probably caused only by

this small amount of records being distributed over two of

the backends. Any increase in response time is caused by the
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overhead intensity involved in using more than the required

number of backends for this small number of records. Due to

the memory problems encountered during the preliminary

testing, the response-time invariance (RTI) claim which

requires the database size to be multiplied, was not

considered for preliminary testing. Only transactions for

response-time reductions were tested throughout this study.

The preliminary testing for the simple update operation

was only conducted on as many backends as in a four-backend

configuration. Only a total of six backends were available

for testing because of disk problems with two of the eight

backends. Due to the lack of time, preliminary testing was

conducted on only four (4) of the six (6) available backends.

The results are presented in the following sections.

1. The SinQle-Backend Configuration

The following preliminary times recorded for the

response-time reduction of a single transaction are based on

the single-backend configuration. Table 1 lists the

transaction response times in seconds, while Table 2 lists the

number of records of each record size.

TABLE 1. THE SINGLE-BACKEND RESPONSE TIMES

Trans # SMR KDR MLR LGR

TR 1 4.350 5.400 9.200 14.983
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TABLE 2. THE SINGLE-BACKEND RECORD DISTRIBUTIONS

Rec Size BE #1

Large 1680
Med-Large 3360
Medium 8400
Small 16800

Total 30240

2. The Two-Backend Conficruration

The following preliminary times recorded for the

response-time reduction of a single transaction are based on

the two-backend configuration. Table 3 lists the transaction

response times in seconds, while Table 4 lists the number of

records of each record size.

TABLE 3. THE TWO-BACKEND RTR TEST

Trans # SMR MDR MLR LGR

TR 1 4.366 3.483 5.233 9.100

* ******** *** ********* **** **** *** *** **** ***** ******* ** ***** *** *

TABLE 4. TWO-BACKEND RECORD DISTRIBUTION

Rec Size BE 11 BE #2 Total

Large 810 870 1680
Med-Large 1648 1712 3360
Medium 4198 4202 8400
Small 9050 7750 16800

Total 15706 14534 30240
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3. The Three-Backend Configuration

The following preliminary times recorded for the

response-time reduction of a single transaction are based on

the three-backend configuration. Table 5 lists the

transaction response times in seconds, while Table 6 lists the

number of records of each record size.

TABLE 5. THE THREE-BACKEND RTR TEST

Trans # SMR MDR MLR LGR

TR 1 5.283 6.400 5.416 8.633

* ******* ******* *** **** *** *** **** *** **** ************ ***** *** ** *

TABLE 6. THREE-BACKEND RECORD DISTRIBUTION

Rec Size BE #1 BE #2 BE #3 Total

Large 528 582 570 1680
Med-Large 1168 1008 1184 3360
Medium 2772 2648 2980 8400
Small 4663 5476 6661 16800

Total 9131 9714 11395 30240

4. The Four-Backend Confiquration

The following preliminary times recorded for the

response-time reduction of a single transaction are based on

the four-backend configuration. Table 7 lists the transaction

response times in seconds, while Table 8 lists the number of

records of each record size.
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TABLE 7. THE FOUR-BACKEND RTR TEST

Trans # SMR MDR MLR LGR

TR 1 7.200 5.233 3.850 6.183

TABLE 8. FOUR-BACKEND RECORD DISTRIBUTION

Rec Size BE #1 BE #2 BE #3 BE #4 Total

Large 440 364 370 506 1680
Med-Large 876 820 772 892 3360
Medium 1907 2144 2291 2058 8400
Small 4117 3818 4933 3932 16800

Total 7340 7146 8366 7388 30240

B. A COMPARATIVE CHART

Figure 4 shows the RTR performance of MBDS on the update

transaction. The response times are taken from the update

transaction in the large record transaction file. This chart

reeals some positive indications of performance improvements

over the two and four backend configurations.
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VI. CONCLUSIONS AND RECOMMENDATIONS

The main emphasis of this thesis was on the

instrumentation of a parallel and scalable database computer,

namely, the Multi-Backend Database System (MBDS), for

benchmarking its complex operations. The primary research

question was to determine whether MBDS demonstrates the

response-time reduction and response-time invariance when

carrying out its two complex operations: UPDATE and

RETRIEVE-COMMON. In order to benchmark these transactions,

the proper instrumentation of the test database, test

transaction sets, and test procedures was thoroughly executed.

Detailed testing, problem identification (debugging), and

minor software modifications were also conducted in an attempt

to verify the correctness of the program code for these

complex operations.

During the preliminary testing of the UPDATE and RETRIEVE-

COMMON operations, several major problems were discovered in

the program code. Ironically, the problems encountered with

both operations were centered around memory allocations. The

program code for each operation includes a constant which is

used to set and define a desired data structure (i.e., bucket

index, and address array) of a particular size for adequate

storage of large amounts of records being retrieved by both
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operations. The data structures provide a buffer for selected

records to be stored.

Although the system uses the virtual memory, there is not

enough main memory available to minimize the amount of paging

of data structures and their retrieved records, in and out of

the main memory. Of the four (4) megabytes of the main memory

provided per backend, the UNIX system takes up approximately

1.5 megabytes alone, leaving only 2.5 megabytes for storage

of large amounts of records from 100 to 1000 bytes in size,

with their associated data structures which include pointers,

link lists, address arrays, bucket indexes, block structures,

etc. Thus, it appears that the key to successful benchmarking

of the UPDATE and RETRIEVE-COMMON operations rest on the

proposal to substantially increase the amount of the main

memory per backend which is presently four (4) megabytes. A

second alternative is to consider a lengthy algorithmic change

to the storage algorithms used by each operation.

Nevertheless, MBDS has made tremendous strides in meeting

its designed performance goals in regards to the RETRIEVE and

DELETE operations. However, some short-term efforts will be

required from highly qualified system programmers to examine

and clean up the existing software problems encountered while

testing the UPDATE and RETRIEVE-COMMON operations. Once the

evaluation, modification, and testing of the software has been

successfully completed, and correctness and proper functioning

of the program code has been verified, formal benchmarking of
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these complex operations can then be thoroughly exercised.

Subsequently, the results of the benchmarks can be used to

fully assess the performance claims of the implementor of MBDS

based on all four of its operations: RETRIEVE, DELETE,

UPDATE, and RETRIEVE-COMMON.
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